Fast timing meeting measurements

Brighton 13 Jan 2011

L.M. Fraile, UCM

Beta decay

The Advanced Time Delayed βγγ(t) method

HPGe: BRANCH SELECTION High energy resolution Poor time response

Plastic β scintillator: TIMING Fast response Efficient start detector LaBr₃(Ce)/BaF₂: TIMING Fast response γ-detectors Poor energy resolution Stop detectors

The Advanced Time Delayed βγγ(t) method

 β -BaF₂-HPGe / β -LaBr₃-HPGe: lifetime measurements

β–HPGe–HPGe: coincidences, level scheme, branchings

ATD $\beta\gamma\gamma$ (t) studies

Nuclear chart below ⁶⁸Ni

Prospects: nuclei below ⁶⁸Ni

^{64,66}Fe, 2⁺ states (most intense transitions), M. Hannawald et al., PRL 82, 1391 (1999)
S. Lunardi et al., PRC 76, 034303 (2007)
⁶⁸Fe E(2⁺) = 522 keV, J.M. Daugas et al., FINUSTAR, AIP Conf Proc 831, 427 (2006)

L.M. Fraile

Pre-analysis ⁶³Mn decay [before Sep run]

L.M. Fraile

UCM

Pre-analysis ⁶³Mn decay

Transitions in ⁶³Fe

- ✓ 357 keV level, $T_{1/2} = 110$ ps
 - \rightarrow 357 keV transition (neglecting conversion coefficient)
 - E1 not expected: 1/2⁻, 3/2⁻, 5/2⁻ states or 9/2⁺ (long lifetime)
 - B(E2)~60 W.u. (too high)
 - $B(\underline{M1})=0.0079 \ \mu_N^2$
- ✓ 451 keV level, $T_{1/2} = 780$ ps
 - \rightarrow 93 keV transition
 - Similar for E1 and E2
 - $B(\underline{M1})=0.028 \ \mu_N^2$
 - \rightarrow 451 keV transition
 - $B(E1)=3.2x10^{-6}e^{2}fm^{2}$ (low)
 - B(M1)=2.9x10⁻⁴ μ_N^2 (low)
 - B(<u>E2</u>)=1.4 W.u. (nicely fits systematics)

Low-lying levels in ⁶³Fe

✓ Two dipole M1 and one E2 transition

- \rightarrow Either 1/2⁻, 3/2⁻, 5/2⁻
- \rightarrow or 5/2⁻, 3/2⁻, 1/2⁻
- ✓ Beta feeding from $5/2^{-}$
 - \rightarrow 357 and 451 keV
 - \rightarrow not to ground state
- ✓ Similar to ⁵⁷Fe

1/2⁻ is the ground state
3/2⁻ is the 357 keV state
5/2⁻ is the 451 keV state

New data ⁵⁹⁻⁶⁶Mn decay to elucidate structure at higher E Similar situation expected in odd-A Fe isotopes Role of the 9/2⁺ orbital

Nuclear chart below ⁶⁸Ni @ PRESPEC

		Cu 57	Cu 58	Cu 59	Cu 60	Cu 61	Cu 62	Cu 63	Cu 64	Cu 65	Cu 66	Cu 67	Cu 68	Cu 69	Cu 70	Cu 71	Cu 72	Cu 73	Cu 74	Cu 75	
: (0f7/2) ^{Z-20}	28	Ni 56	Ni 57	Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	Ni 64	Ni 65	Ni 66	Ni 67	Ni 68	Ni 69	Ni 70	Ni 71	Ni 72	Ni 73	Ni 74	
		Co 55	Co 56	Co 57	Co 58	Co 59	Co 60	Co 61	Co 62	Co 63	Co 64	Co 65	Co 66	Co 67	Co 68	Co 69	Co 70	Co 71	Co 72	Co 73	_
	26	Fe 54	Fe 55	Fe 56	Fe 57	Fe 58	Fe 59	Fe 60	Fe 61	Fe 62	Fe 63	Fe 64	Fe 65	Fe 66	Fe 67	Fe 68	Fe 69	Fe 70	Fe 71	Fe 72	
		Mn 53	Mn 54	Mn 55	Mn 56	Mn 57	Mn 58	Mn 59	Mn 60	Mn 61	Mn 62	Mn 63	Mn 64	Mn 65	Mn 66	Mn 67	Mn 68	Mn 69		46	
	24	Cr 52	Cr 53	Cr 54	Cr 55	Cr 56	Cr 57	Cr 58	Cr 59	Cr 60	Cr 61	Cr 62	Cr 63	Cr 64	Cr 65	Cr 66	Cr 67	44	,		
Б		V 51	V 52	V 53	V 54	V 55	V 56	V 57	V 58	V 59	V 60	V 61	V 62	V 63	V 64	42				N	~
	22	Ті 50	Ti 51	Ti 52	Ti 53	Ti 54	Ti 55	Ti 56	Ti 57	Ti 58	Ti 59	Ti 60	' 40 '								
,		Sc 49	Sc 50	Sc 51	Sc 52	Sc 53	Sc 54	Sc 55	Sc 56	Sc 57	Sc 58	38						VV			e
core		28		30		32		34		36										S	
⁴⁸ Ca	⁴⁸ Ca	Ca core $v (1p_{3/2}, 0f_{5/2}, 1p_{1/2})^{N-28}$									∼ (0g _{9/2}) ^{N-40}										

The region NE of ¹³²Sn

- ✓ Nuclear structure close to the N=82 Z=50 double shell closure
 - \rightarrow Understanding of the effect of large N/Z
 - \rightarrow Transition rates required to constraint calculations (¹³⁵Sb)
 - → Experimental information needed to define better the M1 operator parameters north-east of ¹³²Sn
 - \rightarrow Evolution of collectivity
- \checkmark Topical region for r-process
 - \rightarrow Nuclear input for modeling
 - \rightarrow Waiting points

UCM

- ✓ IS441 fast-timing experiment at ISOLDE
 - \rightarrow Sn separated using molecular beams of SnS+
 - \rightarrow Application of LaBr₃(Ce) to timing

Fast timing RESULTS on¹³⁴Sb, ¹³⁵Sb and ¹³⁶Te

¹³⁴Sb (132 Sn \oplus p \oplus n) results

¹³⁴Sb results: lifetime of 383 keV level

¹³⁴Sb results: lifetime of 383 keV level

¹³⁴Sb results: comparison to shell model

Levels $\pi g_{7/2} v f_{7/2}$	Exp (keV)	Brown (keV)	Covello & Gargano (keV)
0-	0	0	0
1-	13	333	52
2-	331	404	385
3-	383	587	429

Transition		Exp (keV)		Brown* (keV)	Covello Gargano (keV)		
$3^- \rightarrow 2^-$	B(M1) =	2.0(0.4)	μ_N^2	1.60	1.39		
$3^- \rightarrow 1^-$	B(E2) =	118(26)	e ² fm ⁴	84	115		

B(M1) is one of the fastest in all known nuclei at the excitation energy below 3 MeV

The region below ¹³²Sn @ PRESPEC

UCM

Fast-timing elements

Time resolution vs efficiency

- Opposite requirements
- Precision = Resolution (FWHM) / $N^{\frac{1}{2}}$

✓ Photosensors (if PMs)

- Best time response phototubes are 2" tubes
- Effective diameter is about 44-46 mm

✓ Detectors:

- Experience gained with BaF2 over 20 years applies to LaBr3
- Size ("as small as possible" ;-)
- Shape (but 44-46 mm diamter at base for coupling)

Basic array at DESPEC

UCM

- ✓ Beta decay → AIDA DSSSD too slow
 - \rightarrow Needs "few" 100 ps instead

- \rightarrow Segmentation
- ✓ Isomeric decays → Coupling with AIDA ?
- 36-48 LaBr₃(Ce) detectors in rings around the target
- using 9-12 clusters of 4 individually-shielded crystals

Isomeric decays

Fast timing yy(t): isomers at GANIL

Fast timing yy(t): isomers at GANIL

1 EXOGAM clover Ge and 4 large fast timing BaF_2 detectors.

Trigger on arriving ion

[H. Mach et al.]

Long lifetimes of the 8⁺ isomers

L.M. Fraile

States below 8⁺ in ⁹⁶Pd

⁹⁶Pd: 8^+ seniority isomer, BaF_2 - BaF_2 coincidences Good statistics – rate of about 2 isomers/s.

[H. Mach et al.]

The γγ(t) method (isomers)

BaF₂–BaF₂ / LaBr₃–LaBr₃: lifetime measurements

Time-delayed spectra due to the 6+, 4+ and 2+ states in ${}^{96}Pd$ from the BaF₂-BaF₂(t) coincidences plotted on the same time scale.

Note a unique assignment of gamma-rays into the sequence in the cascade.

Prompt calibration with LaBr₃(Ce)

[J-M Régis, NIM A 622 (2010) and PhD thesis to come soon]

